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a-Alkylidene-b-lactams have been prepared in good to excellent yields by olefin cross-metathesis. Elec-
tron-poor a-methylene-b-lactams undergo cross-metathesis more rapidly and efficiently than more elec-
tron-rich analogs. Significantly, tetrasubstituted alkenes have for the first time been accessed by CM
reactions.

� 2008 Elsevier Ltd. All rights reserved.
O

O
R'

1 or 2 (5 mol%)
CH2Cl2, reflux

12 - 24 h

O

O
R'

n = 1, 2

Ru
Ph

NMesMesN

PCy3

Cl
Cl Ru

NMesMesN
Cl
Cl

iPr-O
1 2

R R

55-94%
Z:E >20:1-5:1

Scheme 1. CM reactions of a-methylene-b-lactones.
a-Alkylidene-b-lactams are structural units found in several po-
tent b-lactamase inhibitors.1 Moreover, they serve as building
blocks for the preparation of b-lactam antibiotics,2 as well as
b-amino alcohols and acids.3 A recent investigation in our group
demonstrated that cross-metathesis (CM)4 is an efficient and
powerful tool to introduce various functional groups to a-methylene-
b-lactones (Scheme 1).5 It was anticipated that a-methylene-b-lac-
tams would exhibit similar reactivity. We herein describe our CM
results with a-methylene-b-lactams, examining specifically the ef-
fect of substitution on the amide nitrogen. In addition, CM to give
tetrasubstituted alkenes is reported for the first time.

Preliminary studies involved reactions between a-methylene-
b-lactam 3 and terminal olefins a–c (2 equiv) in the presence of
Grubbs second generation catalyst 1 or the Grubbs-Hoveyda cata-
lyst 2 (Table 1, entries 1, 7, 8, 14, and 15). Coupling of 3 with 1-pen-
tene (a) was complete within 1 h using 2 mol % of 1 (entry 1).
Coupling with b, however, was only marginally promoted by 1,
while portion-wise additions of catalyst 2 gave a remarkable in-
crease in yield (entries 7 and 8). Catalyst 1 did not promote the
coupling of 3 with c; however, catalyst 2 did (entries 14 and 15).
Overall, with less reactive cross-partners (b and c), 2 appeared to
be more effective, and optimal yields were realized with portion-
wise additions.

In order to determine whether the conclusions with 3 could be
extrapolated to other a-methylene-b-lactams, we examined the
series 3–7. The reactivity of electron-poor lactam 3 was compared
to more electron-rich lactams 4–7. All lactams coupled efficiently
with a (Table 1, entries 1–6), and the most electron-deficient lac-
tam 3 required the least amount of catalyst. Lactam 4 coupled with
a in a lower yield (61%) when catalyst 1 was employed (entry 2);
however, catalyst 2 furnished 4a in 89% yield (entry 3).

The influence of the substituent on the amide nitrogen was evi-
dent when less reactive cross-partners, b and c, were used (Table 1,
ll rights reserved.
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entries 7–20). The lactams (entries 8–12) were subjected to identi-
cal reaction conditions, and the yields for lactams 3b and 4b were
the same. However, a notable decrease in yield was observed for
more electron-rich lactams, 5–7. The yield of 7b could be improved
from 57% (entry 12) to 72% with increased catalyst loading (entry
13).

For cross-partners, a and b, the initial charge of catalyst 2 usu-
ally led to the greatest conversion, but this barely promoted CM
reactions between allyl chloride (c) and lactams 3–7. In all cases,
the addition of a 5 mol % portion of 2 with heating for 12 h led to
considerable conversions, and an additional 1 mol % of 2 with con-
tinued heating for 1 h provided lactams 3c, 5c, 6c, and 7c in rea-
sonable yields (Table 1, entries 15, and 18–20). Although only
25% yield of 4c was obtained by using the same protocol (entry
16), portion-wise addition of 2 over the course of 3 h resulted in
the formation of 4c in an improved 60% yield (entry 17). However,
reactions with c were incomplete in all cases, and increasing the
catalyst loading did not improve the yields.

Both electron-rich and electron-poor styrenes coupled effi-
ciently with 3 (entries 21 and 22). Notably, the E-selectivity was
higher, which may be a result of increased branching at the



Table 2
CM reactions of a-methylene-b-lactam 3 with 1,1-disubstituted alkenes
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Entry R R0 Catalyst loading Yield (%) E:Za

1 Me CH2CH2CH3 2 mol % � 3 85 1:1
2 Me CH2CH2OAc 2 mol % � 3 64 1:1.5
3 Me CH2Cl 2 mol % � 5 58 1:1.6
4 Me CH2COOEt 2 mol % � 5 41 1:1.5

Table 1
CM reactions of lactams 3–7

NR
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Catalyst 1 or 2

CH2Cl2, reflux

NR
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3: R = Boc
4: R = H
5: R = Bn
6: R = Ph
7: R = p-MeOPh

a: R' = (CH2)2CH3
b: R' = (CH2)2OAc
c: R' = CH2Cl
d: R' = p-MeOPh
e: R' = p-FPh
f: R' = CH2OH

R'

Entry Reactants Product Catalyst (loading) Yield (%) E:Za

1 3, a 3a 1 (2 mol %) 84 2.5:1
2 4, a 4a 1 (2 mol % � 3) 61 2:1
3 4, a 4a 2 (1 mol % � 3) 89 2:1
4 5, a 5a 1 (2 mol % � 2) 89 2:1
5 6, a 6a 1 (2 mol % � 2) 82 3:1
6 7, a 7a 1 (2 mol % � 2) 80 2.5:1
7 3, b 3b 1 (2 mol % � 5) 57 2:1
8 3, b 3b 2 (1 mol % � 3) 90 2:1
9 4, b 4b 2 (1 mol % � 3) 90 2:1

10 5, b 5b 2 (1 mol % � 3) 77 1.5:1
11 6, b 6b 2 (1 mol % � 3) 76 2:1
12 7, b 7b 2 (1 mol % � 3) 57 1.5:1
13 7, b 7b 2 (2 mol % � 5) 72 1.5:1
14 3, c 3c 1 (2 mol % � 3) NR —
15 3, c 3c 2 (5 mol %; 1 mol %) 78 1.2:1
16 4, c 4c 2 (5 mol %; 1 mol %) 25 1.1:1
17 4, c 4c 2 (3 mol % � 3) 60 1.1:1
18 5, c 5c 2 (5 mol %; 1 mol %) 58 1.1:1
19 6, c 6c 2 (5 mol %; 1 mol %) 54 1.1:1
20 7, c 7c 2 (5 mol %; 1 mol %) 48 1.1:1
21 3, d 3d 2 (1 mol % � 3) 87 5:1
22 3, e 3e 2 (1 mol % � 3) 90 3:1
23 3, f 3f 2 (2 mol % � 5) 77 2:1

a Determined by 1H NMR.
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a-carbon of the alkene. Additionally, CM of 3 with unprotected al-
lyl alcohol, which did not undergo CM with a-methylene-b-lac-
tones,5 gave a good yield of 3f, although increased catalyst
loading was required (entry 23).

The stereoselectivity of CM reactions can be quite varied, but
generally, E-isomers predominate.4,6 However, our initial investi-
gations5 involving CM of exocyclic enones evaluated an a-methy-
lene-b-lactone with a bulky substituent at C-4, which led to CM
adducts with high Z-selectivity (Scheme 1). In comparison, CM
reactions with a-methylene-b-lactams 3–7, which have no substi-
tuent at C-4, gave rise to cross-products that were slightly E-selec-
tive.7 To assess the steric influence that C-4 substitution imposes
on the E:Z ratio, a-methylene-b-lactam 8 was examined (Scheme
2). When 8 was reacted with b under the conditions developed
for 4 (Table 1, entry 9), a-alkylidene-b-lactam 8b was isolated in
81% with an E/Z ratio of 1:3. Thus, a group as small as methyl sig-
nificantly impacted the E/Z selectivity.

Unlike the successful construction of tetrasubstituted cycloalk-
enes via ring-closing metathesis (RCM),8 CM reactions to give tet-
rasubstituted alkenes have not yet been reported to our
knowledge. The facility with which a-methylene-b-lactones
NH
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Scheme 2. The impact of C-4 branching on CM reactions.
underwent CM to give trisubstituted alkenes (see Scheme 1)
prompted us at that time to attempt the preparation of tetrasubsti-
tuted alkenes. This was unsuccessful. However, in contrast to our
a-methylene-b-lactones that had relatively large substitutents at
C-4, most of our a-methylene-b-lactams were unsubstituted at
that position. Consequently, we decided to examine CM between
the most reactive a-methylene-b-lactam 3 and terminal disubsti-
tuted alkenes. The results are shown in Table 2.

CM reactions between 3 and various disubstituted alkenes (Ta-
ble 2, entries 1–8) proceeded in moderate to excellent yields and
with little to no stereoselectivity. Comparing the conditions and re-
sults of entries 1–3 with the preparations of trisubstituted alkenes
3a–c (Table 1, entries 1, 8, and 15), the CM reactions to give tetra-
substituted alkenes generally required more catalyst. Compatible
functional groups included ester,9 phenyl, trimethylsilyl, and
unprotected alcohol groups (Table 2, entries 4–7). 3-Methyl vinyl
acetate, however, did not undergo CM reaction with 3 (entry 8),
presumably due to the electronic nature of the vinyl acetate. In
most cases, 10 mol % loading of catalyst 2 was required to reach
a reasonable conversion.

The substituents of the cross-partners could be extended (from
Me to Et) without diminishing the reactivity of CM (Table 2, entry
9). However, any a-branching on the allylic position10 appeared to
shut down the CM reaction completely (Table 2, entries 10 and 11).
On the other hand, CM reaction of 3 with 2-methyl-1-penten-3-ol,
which bears an allylic alcohol, proceeded in moderate yield with an
E:Z ratio of 1:2.5 (entry 12). The yield was further improved to 69%
by using increased catalyst loading and extended refluxing (entry
13).

To further clarify the role that steric factors play in CM reac-
tions, the reactivity of 10, which contains a methyl group on C-4
of the lactam, with 2-methyl-1-pentene was examined (Table 3,
entry 1). No cross-product was observed. On the other hand, the
CM reactions to form tetrasubstituted alkenes could take place
when an electron-rich a-methylene-b-lactam 5 was employed (en-
try 2), which may suggest that the electronic effects are not as
important as steric effects in these reactions.

Additional support for a prominent role for steric effects is seen
in the contrast in CM reactivity of enoates 12 and 13. a-Methyl-
substituted enoate 12 was reported to undergo CM with a simple,
terminal alkene in the presence of catalyst 1 in excellent yield with
5 Me CH2Ph 2 mol % � 5 81 1:1.5
6 Me CH2SiMe3 2 mol % � 5 73 1:1.7
7 Me CH2OH 2 mol % � 5 86 1:1.7
8 Me OAc 2 mol % � 3 NR —
9 Et Et 2 mol % � 5 65 —

10 Me CH(CH3)2 2 mol % � 3 NR —
11 Me Ph 2 mol % � 3 NR —
12 Me CH(OH)C2H5 2 mol % � 5b 40 1:2.5
13 Me CH(OH)C2H5 5 mol % � 3c 69 1:2.5

a Determined by 1H NMR.
b The reaction was refluxed for 12 h after the last addition of the catalyst.
c The reaction was refluxed for 12 h after each addition of the catalyst.



Table 3
Investigation of steric and electronic effects
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10, R = Boc, R1 = Me
5, R = Bn, R1 = H 11, R = Bn, R1 = H
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Entry R R1 Catalyst loading Yield (%) E:Za

1 Boc Me 2 mol % � 3 NR —
2 Bn H 2 mol % � 5 74 1:1.2

a Determined by 1H NMR.

1022 Y. Liang et al. / Tetrahedron Letters 50 (2009) 1020–1022
high E-selectivity.6b However, we found that, under similar condi-
tions and with 1-pentene as a cross-partner, enone 13 did not react
at all. The result was the same with extended reaction times and
higher catalyst loading with either 1 or 2. Sensitivity to steric ef-
fects is further illustrated by the failure of amide 14 to undergo
CM with disubstituted terminal olefin 3-methylbut-3-enyl acetate
(see alkene for entry 2, Table 2) in the presence of either catalyst 1
or 2, even with high catalyst loading and extended reaction time.
The broad CM reactivity of a-methylene-b-lactones and -lactams
in contrast to the limited reactivity of 1,1-disubstituted enoates
and enamides suggests that these strained heterocycles could find
utility as masked enoates and enamides.

CO2CH3 CO2CH3

12 13

CONH2

14

In conclusion, it has been shown that a-methylene-b-lactams

undergo efficient CM reactions. Notably, for the first time, the
application of CM to the formation of tetrasubstituted alkenes
has been demonstrated. The observation that electron-poor
lactams exhibit superior reactivity to electron-rich lactams is
consistent with the CM reactivity profile of monosubstituted
a,b-unsaturated amides.11 Interestingly, C-4 unsubstituted lactams
3-7 do not undergo CM with substantial E-selectivity. However,
substitution at C-4 (substrate 8) led to Z-selectivity without dimin-
ished reactivity for the a-methylene-b-lactam, which is consistent
with the CM of a-methylene-b-lactones. The impact of allylic
branching on CM reactivity has also been illustrated. Overall,
a-methylene-b-lactones and -lactams are excellent substrates for
CM reactions, and they can be viewed as masked 1,1-disubstituted
enoates and enamides, which have very limited or nonexistent CM
reactivity. Our results also suggest that steric factors play a domi-
nant role in both stereoselectivity and feasibility of CM reactions.
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